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ABSIRAC3 

We cons ider  finite p -g roups  with the p rope r ty  that  if x C G -  G '  and z E G '  

then x is conjugate to xz in G. In certain special cases G has class 2 or 3. 

1. Introduction 

The F2 condit ion was in t roduced by A. R. Camina  in [1]. Let  (3 be a finite 

group and H a normal  subgroup of G with 1 / H / G .  Then  we say that the pair 

(G, H )  is F2 iff x is conjugate  to xz  in (3 for every x in (3 - H and every z in H. 

The F2 p-groups  were examined in [3]. It turns out that H must be a term of 

the lower central series 

G = y~(G) > y z (G)  > . - "  > y,. (G)  > ) ' , . , l ( G )  = 1 

of G and also a term of the upper  central series; see [3], L e m m a  2.1. 

Incomple te  as our  results are, in view of the difficulty experienced in extending 

them, it seems best to publish them as they stand. First we record two 

hypothet ical  s tatements:  

CONJECTURE 1. If (G, y~ (G))  has F2 then (G, y~+l(G)) has F2, where G is a 

finite p -g roup  and 1 < i < c. 

CONJECTURE 2. If G is a finite p -g roup  of class c and ((3, H )  has F2 then 

H = yc- , (G)  or y,. (G).  

Clearly if Conjec ture  1 were true for all i then a p -g roup  G with (G, y2(G)) in 

F2 would have (G, y, (G))  in F2 for 2 _-< i _<- c ; if x E y~ (G)  - yi+~(G) then the 

conjugacy class of x would be xy~+l(G), and G would have the interesting 

proper ty  that the classes would all be " la rge"  and the centralizers would all be 
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"small". (Some reasoning along these lines will be found in [4].) Conjecture 2, 

which is certainly true when c = 3 and i =  2 (see [3], Theorem 5.2), might, 

according to results in [2], elucidate the structure of the finite groups G such that 

(G, H)  has F2 for some H. 

In the present paper we consider finite p-groups G and start on the case 

H = G',  hoping to prove that G has class at most 3. 

THEOREM 3.1. fiG is a finite 2-group and (G, y2(G)) has F2 then G has class 
2. 

Theorem 5.2 of [3] implies that if (G, G')  has F2 and if G is a finite p-group of 

class greater than 2, then the minimal number of generators of G is divisible by 

4. 

THEOREM 4.1. I f  G is a finite 4-generator p-group and ( G, 72(G)) has F2 then 
G has class 2 or 3. 

Theorem 6.3 of [3] asserts that there is a finite p-group G of class 3 such that 

((3, y2(G)) has F2, for any p > 3; and on page 361 it was remarked that "no 

doubt there are plenty of examples with p = 2 or 3". By Theorem 3.1 above 

there are none at all with p = 2. But in Theorem 5.1 below we present a finite 

3-group of class 3 in which (G, y2(G)) has F2. In fact 73(G) is non-cyclic of order 

9. Perhaps this could be viewed as evidence that there might be a p-group of 

class 4 in which (G, G') has F2. 

2. Notation, lemma 

From now on all groups considered are finite p-groups. 

Commutator  definitions are: 

[ x , y ] - - x  ly lxy ' 

[x, y, z]  : [Ix, y],  

The identity 

(1) 

will be used 

[xy, z] = [x, z][x, z, y][y, z] 

without explicit reference. The following forms 

Jacobi-Witt-Hall identity will be most useful: 

(2) [y, z, x] [z, x, y] [x, y, z] ~ 74(0)  

if x, y, z E G;  further, the left-hand side lies in ys(G) if x G y2(G). 

of the 
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Notation for the lower central series was given earlier. Note that G is said to 

have class c i f f  3'c (G)  > 1 and %+~(G) = 1. We sometimes write 3'2(G) as G ' .  

When the meaning should be obvious we write 3', for 3,,(G). If G is a finite 

p-group then d(G) denotes the minimal number  of generators of G. 

We recall that if (G, G ' )  ~ F2 with G a finite p-group,  then every 3"~/y,+~ has 

exponent  p;  see [3], Corollary 2.3. 

If (G, G ' )  has F2 with 

Jc:3':J=p m, J3'::3'31=p °, 13'31=p, 3'4=1, 

then as in [3] we have m = 2 n  with n even; further if C = C(G'), a E G -  C 

and A = (x U G:  [a ,x]  ~ 73) then 

G / G ' =  C / G ' @ A / G ' ,  

I G : C l = l G : A t = p " .  

This enables us to choose a set {a~,a, . . . . .  a,,} of generators for G with the 

property that (a,+z . . . . .  a2,)_- < C (G ' ) ,  which will prove to be most useful. 

A major  difficulty in dealing with p-groups G in which (G, G ' )  has F2 lies in 

finding a bound for 13'3: y4[. Here  is the best result that we can obtain. 

LEMMA 2.1. If (G, 3'2(G)) is F2 and G has class 3 and if 

then r <--_ n .  

PROOF. 

Put 

Ic: 3'2J=p~, 13'2: 3'~l=p °, 13'31=p r, 

Let 

G = (al . . . . .  a2,), 

3 '2(G)  = (b ,  . . . . .  b . ,  3 '3(G)) ,  

3 '3(G)  = (z, . . . . .  z , ) ;  

Xqr : [ b , , a j ] = z ~ " ' " z r  ( l < i = < n , l = < j = < 2 n ) .  

Xk = [X0k] (1 ~ k ~ r). 

If b E 3'2 - 3'3 then I G :  C(b)l = p" because (G, 3'3) is in F2 by [3], Theorem 5.2. 

By an argument  analogous to the proof of Theorem 3.1 of [3], if 01 , . . . ,  0r E Zp 

are such that ~blXi + .  • • + tkrXr has rank < r then ~bl = 0 . . . . .  0r = 0. Since each 

Xk is n × 2 n  we conclude that r_-< n. 
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3. Proof of Theorem 3.1 

PROOF. Suppose by way of contradict ion that y 3 ( G ) ~  1. We can assume 

without  any loss of generali ty that y3(G) has order  2. Nota t ion  follows: 

G = (al ,  a2 . . . . .  a2,), 

y2(G) = (bi, b2,. . . ,  b., T3(G)), 

~,3(G) = ( z ) ;  

=b,  b2 " 'b~.  'j" ( l < i < 2 n ,  l < j = < 2 n ) ;  (3) [ a , , a t ] -  %' %2 = = = 

(4) [b , ,a j ]=z"  (l<_i<=n, l=< j=<2n) ;  

o i 0 2  01~ 
(5) a~=-b,'b2' . . . b .  (1 =<i ~ 2 n ) ;  

't'i 
(6) b~ = z (1 _-< i =< n) 

where the congruences  in (3) and (5) are modulo  y3(G). All exponents  are 

assumed to lie in Z£ 

Matrix definitions next: 

(7) A~ = [oti,~ ]2.×2,, ( l=<k  <=n); 

(8) Bk = [o~k.,+,.,].×. (1 _<- k =< n);  

(9) X : [x, , l°x2..  

We shall use the notat ion yk ( ) meaning "co lumn k of ( )";  similarly p~ ( ) 

means " row k of ( )". Let  

(10) x, -- y, (X)  (1 =< i =< n). 

If we take the special choice of generators  for G indicated in the previous 

section then we have 

(11) X~J = 0  (n+l<=j<=2n). 

We can do ra ther  more,  because change of generators  for G induces e lementa ry  

column operat ions  in X. For  instance, replacing Ol with a~a2 adds column 2 of X 

to column 1. Note  that X is non-singular,  for otherwise some b ~ 3/2-Y~ 

commutes  with every  a t and is therefore  central in G, contradict ing Corol lary  5.3 

of [3]. By a suitable change of {a~, a2 . . . . .  a,}, therefore ,  we can assume that the 

first n columns of X form a unit matrix. 

Next  we use the J W H  identi ty (2) with x = a~, y = at, and z = ak. If we take 

1 ~ k :< n and i > n, j > n then a short calculation gives 
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(12) aqk=O (n+l<=i<=2n, n+l<=j<-2n, l<=k<-n). 

Secondly take l_-<i=<n, l_-<j=<n, and n + l = < k = < 2 n .  Then  

(13) o~+~j =ajk, (l<=i<=n, l~j<=n, n+l<=k<-2n). 

Now we show that  every Bk is non-singular.  We have 

pj(B+,) = [a  ~.,,+i,,,..., a.,,,,,+j,,,], 

3`,,+j (A.,,) = - [o,: t.,, +i.k . . . . .  a . . . .  j,+,]'. 

So by (13) 

p, (B~)' : - Y~ +,+ (Ak). 

If Bk is singular then by (12) so is Ak. By [3], T h e o r e m  3.1, Ak is non-singular  

and so there fore  is Bk. 

The  whole proof  hinges on the identi ty (1) in the fo rm 

[a~, ai][a+, aj]2[a,, aj, a,] = 1. 

In te rms of exponents  this is 

(14) ~ (O, kx~j + aqkq,~ + aqkX~,) = 0 
k - 1  

for 1 <= i <-2n, 1 <=j <=2n. From this and (11) we deduce  that  

(o+,,,,+j..,,#+,.,, + o+,.,,+i.,,x,,,) = O, 
k I 

for  1 = i = n and 1 ~j_-< n. In matr ix  form this is 

Bi~ + Bix~ = 0 (1 -<_ i ~ n) ;  (15) 

we m a k e  the definit ion 

(16) ~, = [ + , , + 2  . . . .  ,~o]'. 

The  fact that  every  B+ is non-singular  now gives ~, = x+ for 1 =< i =< n. Because  

the x, are unit vectors  this is impossible  unless n = 1. But n is even as G has class 

g rea te r  than 2. This contradict ion comple tes  the proof .  

4. P r o o f  of  T h e o r e m  4.1 

PROOF. We  assume without  losing general i ty  that  G has class 4. 

Notation : 

G = (al ,  a2, a+, a4) and 3`z(G) = (bl, b2, 3'3); 
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note  that  by L e m m a  2.1 d(y3/74) = 1 or 2 and we start  with the lat ter  case: 

w(G)  = (c,, c~, w). 

(17) [a,, a,]-- ba b2 ( 1 < i < 4 ,  l=<j<_-4); 

(18) [b,, a,] ~- Xijl gij2 = cl c2 (1--<i_-<2, 1 = < j < 4 ) ;  

the congruences  in (17) and (18) are t aken  modu lo  y3(G)  and y4(G) respect ively.  

Fur ther ,  let 

(19) Xk = [X,jk]2×4 (1 _--- k =< 2); 

(20) X =  X2 " 

We claim that  X has rank  4. For  if not then, modu lo  74, some  a in G - 7 2  

c o m m u t e s  with every b in y2, and then I G :  C(a)[ =<p3, a contradict ion.  We  

change the genera tors  for  G in such a way that  the result ing e l e m e n t a r y  co lumn 

opera t ions  reduce  X to the ident i ty matrix.  Thus  

[b,, a~] -= [b2, a2] - c1, 

(21) [b,, a3] ~ [b2, ad--- c2, 

[b ,  a,] --- 1 otherwise ,  

all modu lo  74(G). 
Next  we do c o m m u t a t o r  calculat ions based  on (2). Tak ing  x = a2, y ~ - a 3 ,  

z = a4 we find that  
ct232 ct232 

[a2, a3, a4] -= [b~'b2 , a4] ~ c2 , 

[a3, a4, a2] --- [bT'" b2~"=, a2] ~ c ~,,2, , 

[a4, a2, a3] ~ rb "=*'b -~'~ a 1 -°=" [ 1 2 , 3]  ~ C2 

Because  d ( 7 3 / 7 4  ) = 2 we have  

O~342 = 0 ,  O~232 ~ 0[241 , 

We tabula te  this result  with three  similar cases. 

"l-ABLE 1 

i j k Resul ts  

2 3 4 a342 = 0 ,  O~232 = ~1~241 

1 3 4 a341 = 0 ,  0/132 = 0/141 

1 2 4 0/122 = 0 ,  0/142 ~ 0/241 

1 2 3 m 2 ,  = O, 0/132 = 0/231 
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W e  a l so  n e e d  to  a p p l y  (2) wi th  x = a~, y = aj, z = bk. 

TABLE 2 

i j k o~ [b2, b,]" 

1 2 1 0/,22 [c,, a2] -1 
i 2 2 c~,:, [ c , ,a , ]  -~ 

1 3 1 0/,,2 [c,, a3] t[c2, al] 
1 3 2 a,3, 1 
1 4 1 0/142 [Cl, a4] t 

1 4 2 a m  [c2, a~] 
2 3 1 a232 [C2, a2] 
2 3 2 0/231 [Cl, as] 
2 4 1 0/242 i 
2 4 2 o/241 [Cl, a4] [c2, a2] -~ 
3 4 1 t~342 [C2, a4] 1 
3 4 2 0/341 [C2, a3] 1 

If [b2, b,] = 1 t hen  T a b l e  2 shows  t ha t  e v e r y  [c,, aj]  = 1 a n d  so G has  class  less 

t h a n  4. So a s s u m e  tha t  [b2, b~] ~ 1. F r o m  T a b l e  1 we have  

0(,2 ' ~ O/122 - - - - -  0t34 , ~ O~342 ~ 0 ;  

0 / 1 4 1  : O~132 : O/231 : 0~, say; 

O~241 = 0[14 2 : O~232 : ~ ,  say. 

F r o m  T a b l e  2 we h a v e  

a n d  so 

[b2, b~]" = [c, ,  a31-'[c2, a l l  

= [c:,  a , ] - '  

= [c, ,  a31 

[c,,  a , ]  2 = [c2, a , ] ,  

[c, ,  a3] = [c2, a, ]  2. 

In  the case p ~  3 we deduce that [c~, a3] = [c2, a~] = 1. I t  fol lows rather easily that 

e v e r y  [ c .  a ,]  = 1, as r e q u i r e d .  

T h e  case  p = 3 s e e m s  to  r e q u i r e  a spec ia l  a r g u m e n t .  T a b l e  2 g ives  

0/131 ~ 0L242 ~ O. 
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If Ak = [at,k ] for k = 1,2 then 

El ° 
A I =  0 - a  ~ A2=  0 - / 3  0 

a 0 ' /3 0 0 

13 0 0 0 0 

Because p = 3 we find that /3A1 + aA2 is singular. By Theorem 3.1 of [3], 

therefore, a = 0 and /3 = 0. Once again, G has class less than four. 

To complete the proof of Theorem 4.1 we still have to consider the case in 

which d(y3/y4) = 1. We give no details of this case, as they can be extracted from 

the proof already given, no new ideas being necessary. Observe that X1 has rank 

2 for otherise, modulo T4(G), some b in y 2 - y 3  is central in (3, contrary to 

Corollary 5.3 of [3]. 

5. An example 

THEOREM 5.1. There is a .finite 3-group G of class 3 in which (G, G') is F2 

and y3(G) is non-cyclic. 

PROOF. We give generators and relations for G. The generators are to be 

a l ,  a2,  a3,  aa ,  b,, b2, z j ,  z2, 

Table 3 specifies the commutator  of x and y in row x column y. 

It is understood that Zl and z2 are central in G. The elements zq are central 

and satisfy zqzji = 1; they will be specified later. We also have the following 

power relations: 

3 a, = 1 (1_-< i =<4); 

b~ = 1 (1 =<j ~2 ) ;  

3 z k = l  ( l=<k ~2) .  

TABLE 3 

a t  a2 a3 a4 

a2 Z21 

a~ b2 b, 
a4 b, b~ ~ z4~ 
b, z, 1 z2 1 
b2 1 z~ 1 z2 
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The first thing to prove is that the order of G is 3 s. This may be done by use of 

the Jacobi-Wit t -Hal l  identity in the manner  of the nilpotent quotient algorithm. 

The details are left to the reader, who will find Table 1 useful. It follows that 

72(G) = (bl, b2, 'Y3) and y3(G) = (z,, z2). 

In particular we have G of class 3 and 73(G) of order 32. 

Secondly we have to show that (G, G') has F2. By the criterion of [3], 

Theorem 3.1 it is easy to see that (G/v~, y,/y3) has F2, the relevant matrices 

being 

[i iJ A I = 0 001 - 001 000 , A, = L 'o _ o°1 o°° 

Now it is enough to show that if x E G - 3'2 and z E y3 then Ix, y] = z for some y 

in G. Take  

modulo 7~(G). Since 

X ~ a ~  ~ l ~ 2 ~ s ~ ° ~ 4 / ~ o t / ' ~ t 3 2  ~ 2  ~ 3  ~ 4  t.,i t.,2 

[x, b~] = z.°'z;_% 

[x, b~] = z#~z; °~, 

x will have the required conjugates provided 

~ l  OL3 

# 0 (rood 3). 
OL2 OL4 

We are left with cases in which a~a4 = a~a3. 

All the elements x satisfying this condition lie in one of the following four 

subgroups of G:  

S, = (a,, a~, 72(G)), 

82 = (a3, a4, ~,2(G)), 

$3 = (a,a3, a~_a4, y2(G)), 

S4 = (a~a;', a2a4', y2(G)). 

We claim that each x in every S~ - y2(G) is conjugate to all xz with z ~ y.,(G). 
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In the case of $1 we have 

t~ 1 t~ 2 u !  0'2 

modulo T3(G) with al ~ 0 or a2 ~ 0. We have 

[x, b,] = z ;  ~', [x, b2] = z l  ~'- 

and so [x, b] = Zl for some b E S~. Further 

al /32 ~2 /3, [x, a 2 ] = z , 2 z !  Ix, a , ] =  z2, z ,  , 

Therefore [ x , a ]  = z2 for some a ES~ if and only if z12~(z~). 

For $3 we need the following calculation based on (1): 

[ala3, a2a4] = z2~z~2z34. 

With x =- (a~a3)°~(a2a4)"2b~'b~ ~ we have 

[x, b,l = % 

Ix, b2] = ( z , z 3  

[x, a~a3] = (z21z12z34)-°r2(ZlZ2) ~1, 

[X, a2a4] = (Z21Z12Z34)ctI(ZlZ2) 132. 

This time we require that ZI2Z34 ~ Z2(ZIZ2). 
The cases with $2 and S4 are very similar. We find that z_~4~(z2) and 

ZI2Z34 ~ (ZIZ21) respectively. Our four conditions are all satisfied if z~2 = z2 and 

Z34 = Z l  . 

That completes the proof of Theorem 5.1. 

REFERENCES 

1. A. R. Camina, Some conditions which almost characterize Frobenius groups, Isr. J. Math. 31 
(1978), 153-160. 

2. David Chillag and I. D. Macdonald, Generalized Frobenius groups, Isr. J. Math. 47 (t984), 
111-122. 

3. I. D. Macdonald, Some p-groups of Frobenius and extra-special type, Isr. J. Math. 40 (1981), 
350-364. 

4. Gary Sherman, A lower bound for the number of conjugacy classes in a finite nilpotent group, 
Pacific J. Math. 80 (1979), 253-254. 


