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ABSTRACT

We consider finite p-groups with the property that if x € G~ G' and 2 € G’
then x is conjugate to xz in G. In certain special cases G has class 2 or 3.

1. Introduction

The F2 condition was introduced by A. R. Camina in [1]. Let G be a finite
group and H a normal subgroup of G with 1 # H## G. Then we say that the pair
(G, H)is F2iff x is conjugate to xz in G for every x in G — H and every z in H.

The F2 p-groups were examined in [3]. It turns out that H must be a term of
the lower central series

G=%(G)>v(G)> > 7(G)> yu(G)=1

of G and also a term of the upper central series; see [3], Lemma 2.1,

Incomplete as our results are, in view of the difficuity experienced in extending
them, it seems best to publish them as they stand. First we record two
hypothetical statements:

ConiecTure 1. If (G, v (G)) has F2 then (G, y.:1(G)) has F2, where G is a
finite p-group and 1 <i<e.

ConjecTURE 2. If G is a finite p-group of class ¢ and (G, H) has F2 then
H=1v..,(G) or v.(G).

Clearly if Conjecture 1 were true for all i then a p-group G with (G, y»(G)) in
F2 would have (G, y.(G)) in F2 for 2=i =c; if x € :(G)— v..(G) then the
conjugacy class of x would be xv..(G), and G would have the interesting
property that the classes would all be “large” and the centralizers would all be
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“small”. (Some reasoning along these lines will be found in [4].) Conjecture 2,
which is certainly true when ¢ =3 and i =2 (see [3], Theorem 5.2), might,
according to results in [2], elucidate the structure of the finite groups G such that
(G, H) has F2 for some H.

In the present paper we consider finite p-groups G and start on the case
H = G’, hoping to prove that G has class at most 3.

THEOREM 3.1. If Gis a finite 2-group and (G, y-(G)) has F2 then G has class
2.

Theorem 5.2 of {3] implies that if (G, G’) has F2 and if G is a finite p-group of
class greater than 2, then the minimal number of generators of G is divisible by
4.

THEOREM 4.1. If G is a finite 4-generator p-group and (G, v.(G)) has F2 then
G has class 2 or 3.

Theorem 6.3 of [3] asserts that there is a finite p-group G of class 3 such that
(G, v:(G)) has F2, for any p >3; and on page 361 it was remarked that “no
doubt there are plenty of examples with p =2 or 3. By Theorem 3.1 above
there are none at all with p =2. But in Theorem 5.1 below we present a finite
3-group of class 3 in which (G, y,(G)) has F2. In fact y,(G) is non-cyclic of order
9. Perhaps this could be viewed as evidence that there might be a p-group of
class 4 in which (G, G') has F2.

2. Notation, lemma

From now on all groups considered are finite p-groups.
Commutator definitions are:

o yl=x""y 'xy,
[x.y, 2] =[x y] z].
The identity
(1) [xy 2] =[x z][x, z, y1[y. ]

will be used without explicit reference. The following forms of the
Jacobi-Witt—Hall identity will be most useful:

(2) [ys Z,X][Z,X, )’][X, y,z]E'y4(G)
if x,y,z € G; further, the left-hand side lies in ys(G) if x € y(G).
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Notation for the lower central series was given earlier. Note that G is said to
have class ¢ iff y.(G)>1 and v...(G)=1. We sometimes write y,(G) as G".
When the meaning should be obvious we write y; for ¥, (G). If G is a finite
p-group then d(G) denotes the minimal number of generators of G.

We recall that if (G, G')€ F2 with G a finite p-group, then every /v, has
exponent p; see [3], Corollary 2.3.

If (G, G') has F2 with

'G: ‘YZJ:pm3 V2! }'3’:17", l')’:slzp, ‘}’4—_-1,

then as in [3] we have m =2n with n even; further if C=C(G'), a€ G- C
and A =(x € G: [a,x] € v5) then

G/IG'=CIG'AIG,
|G: Cl=|G: Al=p"

This enables us to choose a set {a,,d,,...,d-,} of generators for G with the
property that {(@...,..., @:.) = C(G"), which will prove to be most useful.

A major difficulty in dealing with p-groups G in which (G, G') has F2 lies in
finding a bound for |ys: y.|. Here is the best result that we can obtain.

LemMa 2.1. If (G, y:(G)) is F2 and G has class 3 and if

|G: v2|=p", |y vsl=p" |vl=p"

then r = n.
Proor. Let
G ={a,...,0zm),
Y(G)=<(bi,..., b, vs(G)),
Y(G)=(z1,...,2);
[b,a]=21" 2" (1=i=n 1=j=2n)
Put

X = [xix] A1sk=r).

If b € y,—vy; then |G: C(b)| = p” because (G, y;) is in F2 by [3], Theorem 5.2.
By an argument analogous to the proof of Theorem 3.1 of [3], if ¢,..., ¢ EZ,
are such that ¢, X, ++ -+ X, has rank <r then ¢, =0, ..., ¢, =0. Since each
X, is n X2n we conclude that r = n.
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3. Proof of Theorem 3.1

PrROOF. Suppose by way of contradiction that y,(G)# 1. We can assume
without any loss of generality that y,(G) has order 2. Notation follows:

G =<a1’ a23~ - 'aa2n>’
'YZ(G) = <b17 bZa BRI bn, YJ(G)>’

y:(G)=(z);
3 [a,a]=b""bs" b  (1=i=2n 1=j=2n),
(4) [b,a]=2z" (=isn1=j=2n)
(5) a’l=b"b>---br"  (1=i=2n);
(6) p:=2z"  (1=i=n)

where the congruences in (3) and (5) are modulo yi(G). All exponents are
assumed to lie in Z,.
Matrix definitions next:

Q) A = [k Janx2n (1=k=n);
(8) B = [tinriflnxn 1=k =n);
(9) X = [Xij]ann.

We shall use the notation v ( ) meaning “column k of ( )”; similarly p.( )
means “‘row k of ( )”. Let

(10) xi = v (X) 1=i=n)

If we take the special choice of generators for G indicated in the previous
section then we have

(11) xi =0 (n+1=j=2n).

We can do rather more, because change of generators for G induces elementary
column operations in X. For instance, replacing a, with a,a. adds column 2 of X
to column 1. Note that X is non-singular, for otherwise some b € y,— y:
commutes with every a; and is therefore central in G, contradicting Corollary 5.3
of [3]. By a suitable change of {a\, a, ..., a.}, therefore, we can assume that the
first n columns of X form a unit matrix.

Next we use the JWH identity (2) with x = a;, y = q;, and z = a,. If we take
1=k =n and i >n, j>n then a short calculation gives
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(12) ag =0 n+l=i=2nn+l=j=2n1=k=n).
Secondly take 1=i=n, 1=j=n, and n +1=k =2n. Then
(13) Quj = Qg (I=isnl=sj=nn+l1=k=2n)
Now we show that every B, is non-singular. We have
i (Be) = [@unsjty -+ oy Qucnsjnl,
Yori (A) = —[@inaiks ooy Xnnsjnd

So by (13)
P (B) = = Yauj (Ar).

If B, is singular then by (12) so is A.. By [3]), Theorem 3.1, A, is non-singular
and so therefore is B;.
The whole proof hinges on the identity (1) in the form

[a?, a;)a, a,-]z[ai, a, a]=1.
In terms of exponents this is
(14) 21 (Buxi + apthc + aipxii) =0
for 1=i=2n, 1=j=2n From this and (11) we deduce that

?; (@ inviath + oinrinXi) =0,
for 1=i=n and 1 =j = n. In matrix form this is
(15) B+ Bx, =0 (l=i=n)
we make the definition

(16) U=, 0]

The fact that every B; is non-singular now gives ¢ = x; for 1 =i = n. Because
the x; are unit vectors this is impossible unless n = 1. But n is even as G has class
greater than 2. This contradiction completes the proof.

4. Proof of Theorem 4.1

ProOF. We assume without losing generality that G has class 4.
Notation:

G =(ai, a, a5,as) and  v,(G)= (b, by, Y33
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note that by Lemma 2.1 d(ys/vs)=1 or 2 and we start with the latter case:
‘Ys(G) ={(cy, C2, 'Y4>~
(17 [a, a]=b1"by" (1=is4,1=j=4);

(18) [b,aq]=ci"c’” (1=i=2,1=j=4);

the congruences in (17) and (18) are taken modulo y;(G) and y.(G) respectively.
Further, let

(19) X =Ixils (1=k=2)
20 x-[%]

We claim that X has rank 4. For if not then, modulo 7y, some a in G — ¥,
commutes with every b in 7y, and then |G: C(a)| = p’, a contradiction. We
change the generators for G in such a way that the resulting elementary column
operations reduce X to the identity matrix. Thus

[bl, al] = [bz, az] = Cyy
(21) [b], a;] = [bz, a4] = Cy,
[bi,a;]=1 otherwise,

all modulo y4(G).
Next we do commutator calculations based on (2). Taking x = a., y = as,
z = a, we find that

*231 “232

(a2, a5, @] = [b:""b3™, ai) = ¢5™,
(a0 a:] = [577B3%, s = €1,
(s a, as] =[5 b7, ay] = ¢
Because d(ys/v.) =2 we have
s =0, Q232 = Q1.

We tabulate this result with three similar cases.

TABLE 1
i j k Results
2 3 4 Q342 = 0, 232 = (K241
1 3 4 Q341 =0, 132 = 41
1 2 4 Q2 = 0, Qa2 = U241
1 2 3 Q121 = 0, Q132 = Q231
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We also need to apply (2) with x =a;, y = a;, z = b,.

TABLE 2

i ] k w [bz, bl]w

1 2 1 [4373] [Cl, (12]71

1 2 2 [¢ 353 [C:, 111]‘l

1 3 1 32 [C\. a;]il[Cz, 01]
1 3 2 a3 1

1 4 1 Qa2 [Cl, a4]7‘

1 4 2 Qi [C:, 01]7l

2 3 1 Q232 [Cz, az]

2 3 2 Q231 [Cl, a;]

2 4 1 242 1

2 4 2 Q241 [Cl, a4] [Cz, az]Al
3 4 1 Q3s2 [Cz, a4]71

3 4 2 a341 [Cz, 113]71

If [b., b;] = 1 then Table 2 shows that every [c;, a;] = 1 and so G has class less
than 4. So assume that [b;, b,] # 1. From Table 1 we have

A2 = = G = s = 0;
Q= 032 = Q3 = @,  Say;
Moa1 = QU = 232 = 3,  say.
From Table 2 we have
[b2, b1]" = [c, ‘13]_1[02» ai]
=[cz @]
=[c1, a5}
and so
[c1, a5 =[cs, ai],

[c1, as] =[c2, ai].

In the case p# 3 we deduce that [c,, as] = ¢z, ai] = 1. It follows rather easily that
every [¢, a;] =1, as required.
The case p =3 seems to require a special argument. Table 2 gives

Q31 = @02 = 0.
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If Ay =[au] for k =1,2 then

0 0 0 —a 0 0 —a -pB
A = 0 0 —a -8B , A, = 0 0 -8 0
0 « 0 0 a B 0 0
a B 0 0 g 0 0 0

Because p =3 we find that BA,+ aA: is singular. By Theorem 3.1 of [3],
therefore, « =0 and B =0. Once again, G has class less than four.

To complete the proof of Theorem 4.1 we still have to consider the case in
which d(ys/v.) = 1. We give no details of this case, as they can be extracted from
the proof already given, no new ideas being necessary. Observe that X, has rank
2 for otherise, modulo y,(G), some b in y,— vy, is central in G, contrary to
Corollary 5.3 of [3].

5. An example

THEOREM 5.1.  There is a finite 3-group G of class 3 in which (G, G") is F2
and y;(G) is non-cyclic.

Proor. We give generators and relations for G. The generators are to be
ai, as, as, @y, by, bz, 2, 25.

Table 3 specifies the commutator of x and y in row x column y.

It is understood that z, and z, are central in G. The elements z, are central
and satisfy z,z; =1; they will be specified later. We also have the following
power relations:

TABLE 3
a, a; [75) as
a: 221
as b, b,
Qs b, bzA‘ 243
b Z 1 Z2 1
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The first thing to prove is that the order of G is 3°. This may be done by use of
the Jacobi-Witt-Hall identity in the manner of the nilpotent quotient algorithm.
The details are left to the reader, who will find Table 1 useful. It follows that

'Yz(G)=<b1,b2, 'Yz) and 'Y3(G):<Z1,Zz>.

In particular we have G of class 3 and vy;(G) of order 3°.
Secondly we have to show that (G, G') has F2. By the criterion of 3],
Theorem 3.1 it is easy to see that (G/vys, v2/vs) has F2, the relevant matrices

being
0 0 0 -1 0 0 -1 0
A = 0 0 -1 0 7 A= 0 0 01
0 1 0 0 i 1 0 0 0
1 0 0 0 0 -1 00

Now it is enough to show that if x € G — y. and z € y; then [x, y] = z for some y
in G. Take

x=arasasasbl b
modulo y:(G). Since
[x, bi] = 277125,
[x, bo] = z7°2z25%,
x will have the required conjugates provided

23} s

# (0 (mod 3).

[0 %) (s

We are left with cases in which a a4 = asas.
All the elements x satisfying this condition lie in one of the following four
subgroups of G:

Si=(ay, az, A G)),
S: = (as, as, 2(G)),
Ss = (a.as, a:aq, v2(G)),
Si=(aa;', a:a;", v(G)).

We claim that each x in every S; — v.(G) is conjugate to all xz with z € y,(G).
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In the case of S, we have
x=ayasbtbs
modulo y:(G) with a, #0 or a, #0. We have
[x, bi]=21",  [x,b]=2"
and so [x, b] =z, for some b € S,. Further
ay; By ay B
1

[x,a}=z2z), [X,02]=2122

Therefore [x, a] = z, for some a € 8, if and only if z., & (z,).
For S; we need the following calculation based on (1):

[a1as, aza.) = 25" 21223,
With x = (aia;)"(a.a.)b?' b5 we have
[x, b= (z:22)",
[x, bo] = (z:22)
[x, a.ag] = (22_1212234)"’2(2122)31,
[x, a2as] = (22" 212235)" (2122)™.

This time we require that z,z3 & 2x(2,22).

The cases with S, and S, are very similar. We find that z,, &(z,) and
z1223 #{2,25") respectively. Our four conditions are all satisfied if z;; = z, and
23 = Z).

That completes the proof of Theorem 5.1.
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